Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.173
Filtrar
1.
Methods Mol Biol ; 2790: 391-404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649582

RESUMO

Protein biochemistry can provide valuable answers to better understand plant performance and responses to the surrounding environment. In this chapter, we describe the process of extracting proteins from plant leaf samples. We highlight the key aspects to take into consideration to preserve protein integrity, from sample collection to extraction and preparation or storage for subsequent analysis of protein abundance and/or enzymatic activities.


Assuntos
Folhas de Planta , Proteínas de Plantas , Folhas de Planta/química , Proteínas de Plantas/isolamento & purificação , Solubilidade
2.
Methods Mol Biol ; 2787: 281-291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656497

RESUMO

This chapter provides a description of the procedure for two-dimensional electrophoresis that can be performed for any given gel size and isoelectric focusing range. This will enable the operator to recognize critical steps and gain sufficient information to generate 2D images suitable for computer-assisted analysis of 2D-gel, as well as mass spectrometry analysis for protein identification and characterization.


Assuntos
Eletroforese em Gel Bidimensional , Focalização Isoelétrica , Proteínas de Plantas , Eletroforese em Gel Bidimensional/métodos , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/análise , Focalização Isoelétrica/métodos , Proteômica/métodos , Plantas/química , Espectrometria de Massas/métodos
3.
Methods Mol Biol ; 2787: 265-279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656496

RESUMO

Polyacrylamide gel electrophoresis (PAGE) is a widely used technique for separating proteins from complex plant samples. Prior to the analysis, proteins must be extracted from plant tissues, which are rather complex than other types of biological material. Different protocols have been applied depending on the protein source, such as seeds, pollen, leaves, roots, and flowers. Total protein amounts must also be determined before conducting gel electrophoresis. The most common methodologies include PAGE under native or denaturing conditions. Both procedures are used consequently for protein identification and characterization via mass spectrometry. Additionally, various staining procedures are available to visualize protein bands in the gel, facilitating the software-based digital evaluation of the gel through image acquisition.


Assuntos
Eletroforese em Gel de Poliacrilamida , Proteínas de Plantas , Plantas , Eletroforese em Gel de Poliacrilamida/métodos , Proteínas de Plantas/análise , Proteínas de Plantas/isolamento & purificação , Plantas/química , Proteômica/métodos , Software , Coloração e Rotulagem/métodos , Espectrometria de Massas/métodos
4.
Methods Mol Biol ; 2787: 293-303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656498

RESUMO

Phosphopeptide enrichment is the main bottleneck of every phosphorylation study. Therefore, in this chapter, a general workflow tries to overbridge the hurdles of plant sample handling from sample collection to protein extraction, protein solubilization, enzymatic digestion, and enrichment step prior to mass spectrometry. The workflow provides information to perform global proteomics as well as phosphoproteomics enabling the researcher to use the protocol in both fields.


Assuntos
Espectrometria de Massas , Fosfopeptídeos , Fosfoproteínas , Proteínas de Plantas , Proteômica , Fosfopeptídeos/análise , Fosfopeptídeos/isolamento & purificação , Proteômica/métodos , Fosfoproteínas/análise , Fosfoproteínas/isolamento & purificação , Proteínas de Plantas/análise , Proteínas de Plantas/isolamento & purificação , Espectrometria de Massas/métodos , Fosforilação , Plantas/química , Plantas/metabolismo , Fluxo de Trabalho , Proteoma/análise
5.
Ultrason Sonochem ; 105: 106870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579570

RESUMO

The obtained seeds from fruit processing are considered by-products containing proteins that could be utilized as ingredients in food manufacturing. However, in the specific case of soursop seeds, their usage for the preparation of protein isolates is limited. In this investigation a protein isolate from soursop seeds (SSPI) was obtained by alkaline extraction and isoelectric precipitation methods. The SSPI was sonicated at 200, 400 and 600 W during 15 and 30 min and its effect on the physicochemical, functional, biochemical, and structural properties was evaluated. Ultrasound increased (p < 0.05) up to 5 % protein content, 261 % protein solubility, 60.7 % foaming capacity, 30.2 % foaming stability, 86 % emulsifying activity index, 4.1 % emulsifying stability index, 85.4 % in vitro protein digestibility, 423.4 % albumin content, 83 % total sulfhydryl content, 316 % free sulfhydryl content, 236 % α-helix, 46 % ß-sheet, and 43 % ß-turn of SSPI, in comparison with the control treatment without ultrasound. Furthermore, ultrasound decreased (p < 0.05) up to 50 % particle size, 37 % molecular flexibility, 68 % surface hydrophobicity, 41 % intrinsic florescence spectrum, and 60 % random coil content. Scanning electron microscopy analysis revealed smooth structures of the SSPI with molecular weights ranging from 12 kDa to 65 kDa. The increase of albumins content in the SSPI by ultrasound was highly correlated (r = 0.962; p < 0.01) with the protein solubility. Improving the physicochemical, functional, biochemical and structural properties of SSPI by ultrasound could contribute to its utilization as ingredient in food industry.


Assuntos
Annona , Proteínas de Plantas , Sementes , Solubilidade , Sementes/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Annona/química , Ondas Ultrassônicas , Fenômenos Químicos , Sonicação
6.
J Agric Food Chem ; 72(18): 10439-10450, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676695

RESUMO

Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-ß-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Camundongos Nus , Setaria (Planta) , Inibidores da Tripsina , Animais , Humanos , Camundongos , Setaria (Planta)/genética , Setaria (Planta)/química , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/química , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Linhagem Celular Tumoral , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Expressão Gênica , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Masculino
7.
Food Chem ; 448: 139104, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547711

RESUMO

Legume proteins can be induced to form amyloid-like fibrils upon heating at low pH, with the exact conditions greatly impacting the fibril characteristics. The protein extraction method may also impact the resulting fibrils, although this effect has not been carefully examined. Here, the fibrillization of lentil protein prepared using various extraction methods and the corresponding fibril morphology were characterized. It was found that an acidic, rather than alkaline, protein extraction method was better suited for producing homogeneous, long, and straight fibrils from lentil proteins. During alkaline extraction, co-extracted phenolic compounds bound proteins through covalent and non-covalent interactions, contributing to the formation of heterogeneous, curly, and tangled fibrils. Recombination of isolated phenolics and proteins (from acidic extracts) at alkaline pH resulted in a distinct morphology, implicating a role for polyphenol oxidase also in modifying proteins during alkaline extraction. These results help disentangle the complex factors affecting legume protein fibrillization.


Assuntos
Lens (Planta) , Fenóis , Proteínas de Plantas , Lens (Planta)/química , Fenóis/química , Fenóis/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Concentração de Íons de Hidrogênio , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Amiloide/química , Fracionamento Químico/métodos
8.
Protein Expr Purif ; 219: 106474, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38518927

RESUMO

The polyphenol oxidase (PPO) enzyme, which causes enzymatic browning, has been repeatedly purified from fruit and vegetables by affinity chromatography. In the present research, Sepharose 4B-l-tyrosine-4-amino-2-methylbenzoic acid, a novel affinity gel for the purification of the PPO enzyme with high efficiency, was synthesized. Additionally, Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity gel, known in the literature, was also synthesized, and 9.02, 16.57, and 28.13 purification folds were obtained for the PPO enzymes of potato, mushroom, and eggplant by the reference gel. The PPO enzymes of potato, mushroom, and eggplant were purified 41.17, 64.47, and 56.78-fold from the new 4-amino-2-methylbenzoic acid gel. Following their isolation from the new affinity column, the assessment of PPO enzyme purity involved the utilization of SDS-PAGE. According to the results from SDS-PAGE and native PAGE, the molecular weight of each enzyme was 50 kDa. Then, the inhibition effects of naringin, morin hydrate, esculin hydrate, homovanillic acid, vanillic acid, phloridzin dihydrate, and p-coumaric acid phenolic compounds on purified potato, mushroom, and eggplant PPO enzyme were investigated. Among the tested phenolic compounds, morin hydrate was determined to be the most potent inhibitor on the potato (Ki: 0.07 ± 0.03 µM), mushroom (Ki: 0.7 ± 0.3 µM), and eggplant (Ki: 4.8 ± 1.2 µM) PPO enzymes. The studies found that the weakest inhibitor was homovanillic acid for the potato (Ki: 1112 ± 324 µM), mushroom (Ki: 567 ± 81 µM), and eggplant (Ki: 2016.7 ± 805.6 µM) PPO enzymes. Kinetic assays indicated that morin hydrate was a remarkable inhibitor on PPO.


Assuntos
Catecol Oxidase , Cromatografia de Afinidade , Catecol Oxidase/química , Catecol Oxidase/isolamento & purificação , Catecol Oxidase/antagonistas & inibidores , Agaricales/enzimologia , Solanum tuberosum/enzimologia , Solanum tuberosum/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Solanum melongena/enzimologia , Solanum melongena/química , Ácidos Cumáricos/química , Propionatos/química , meta-Aminobenzoatos/química , Ácido 4-Aminobenzoico/química
9.
Protein J ; 43(2): 333-350, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347326

RESUMO

A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 µM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and ß-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.


Assuntos
Cajanus , Folhas de Planta , Humanos , Cajanus/química , Folhas de Planta/química , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo
12.
Curr Protoc ; 2(10): e572, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36205456

RESUMO

Protein purification is an essential method for understanding protein function, as many biochemical and structural techniques require a high concentration of isolated protein for analysis. Yet, many studies of protein complexes are hampered by our inability to express them recombinantly in model systems, generally due to poor expression or aggregation. When studying a protein complex that requires its host cellular environment for proper expression and folding, endogenous purification is typically required. Depending on the protein of interest, however, endogenous purification can be challenging because of low expression levels in the host and lack of knowledge working with a non-model expression system, resulting in yields that are too low for subsequent analysis. Here, we describe a protocol for the purification of protein complexes endogenous to Nicotiana benthamiana directly from leaf tissue, with yields that enable structural and biochemical characterization. The protein complex is overexpressed in Nicotiana benthamiana leaves via agroinfiltration, and the protein-packed leaves are then mechanically ground to release the complex from the cells. The protein complex is finally purified by a simple two-step tandem affinity purification using distinct affinity tags for each complex member, to ensure purification of the assembled complex. Our method yields enough protein for various biochemical or structural studies. We have previously used this protocol to purify the complex formed by an innate immune receptor native to tobacco, ROQ1, and the Xanthomonas effector XopQ, and to solve its structure by single-particle cryo-electron microscopy-we use this example to illustrate the approach. This protocol may serve as a template for the purification of proteins from N. benthamiana that require the plant's cellular environment and are expressed at low levels. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Expression of the protein complex in leaf tissue Basic Protocol 2: Tandem affinity purification of the ROQ1-XopQ complex.


Assuntos
Nicotiana , Folhas de Planta , Proteínas de Plantas , Proteínas de Plantas/isolamento & purificação , Purificação por Afinidade em Tandem
13.
J Nat Prod ; 85(9): 2127-2134, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36044031

RESUMO

Cyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity. Herein were investigated the cyclotides from Anchietea pyrifolia roots, a South American medicinal plant from the family Violaceae. Fourteen putative cyclotides were annotated by LC-MS. Among these, three new bracelet cyclotides, anpy A-C, and the known cycloviolacins O4 (cyO4) and O17 (cyO17) were sequenced through a combination of chemical and enzymatic reactions followed by MALDI-MS/MS analysis. Their cytotoxic activity was evaluated by a cytotoxicity assay against three human cancer cell lines (colorectal carcinoma cells: HCT 116 and HCT 116 TP53-/- and breast adenocarcinoma, MCF 7). For all assays, the IC50 values of isolated compounds ranged between 0.8 and 7.3 µM. CyO17 was the most potent cyclotide for the colorectal cancer cell lines (IC50, 0.8 and 1.2 µM). Furthermore, the hemolytic activity of anpy A and B, cyO4, and cyO17 was assessed, and the cycloviolacins were the least hemolytic (HD50 > 156 µM). This work sheds light on the cytotoxic effects of the anpy cyclotides against cancer cells. Moreover, this study expands the number of cyclotides obtained to date from Brazilian plant biodiversity and adds one more genus containing these molecules to the list of the Violaceae family.


Assuntos
Produtos Biológicos , Ciclotídeos , Proteínas de Plantas , Violaceae , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Brasil , Linhagem Celular Tumoral , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Espectrometria de Massas em Tandem , Violaceae/química
14.
J Biol Chem ; 298(10): 102413, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007611

RESUMO

Cyclotides and acyclic versions of cyclotides (acyclotides) are peptides involved in plant defense. These peptides contain a cystine knot motif formed by three interlocked disulfide bonds, with the main difference between the two classes being the presence or absence of a cyclic backbone, respectively. The insecticidal activity of cyclotides is well documented, but no study to date explores the insecticidal activity of acyclotides. Here, we present the first in vivo evaluation of the insecticidal activity of acyclotides from Rinorea bengalensis on the vinegar fly Drosophila melanogaster. Of a group of structurally comparable acyclotides, ribe 31 showed the most potent toxicity when fed to D. melanogaster. We screened a range of acyclotides and cyclotides and found their toxicity toward human red blood cells was substantially lower than toward insect cells, highlighting their selectivity and potential for use as bioinsecticides. Our confocal microscopy experiments indicated their cytotoxicity is likely mediated via membrane disruption. Furthermore, our surface plasmon resonance studies suggested ribe 31 preferentially binds to membranes containing phospholipids with phosphatidyl-ethanolamine headgroups. Despite having an acyclic backbone, we determined the three-dimensional NMR solution structure of ribe 31 is similar to that of cyclotides. In summary, our results suggest that, with further optimization, ribe 31 could have applications as an insecticide due to its potent in vivo activity against D. melanogaster. More broadly, this work advances the field by demonstrating that acyclotides are more common than previously thought, have potent insecticidal activity, and have the advantage of potentially being more easily manufactured than cyclotides.


Assuntos
Ciclotídeos , Drosophila melanogaster , Inseticidas , Proteínas de Plantas , Violaceae , Animais , Humanos , Sequência de Aminoácidos , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/química , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Violaceae/química , Eritrócitos/efeitos dos fármacos
15.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208951

RESUMO

A 24 kDa leucine-rich protein from ion exchange fractions of Solanum trilobatum, which has anti-bacterial activity against both the Gram-negative Vibrio cholerae and Gram-positive Staphylococcus aureus bacteria has been purified. In this study, mass spectrometry analysis identified the leucine richness and found a luminal binding protein (LBP). Circular dichroism suggests that the protein was predominantly composed of α- helical contents of its secondary structure. Scanning electron microscopy visualized the characteristics and morphological and structural changes in LBP-treated bacterium. Further in vitro studies confirmed that mannose-, trehalose- and raffinose-treated LBP completely inhibited the hemagglutination ability towards rat red blood cells. Altogether, these studies suggest that LBP could bind to sugar moieties which are abundantly distributed on bacterial surface which are essential for maintaining the structural integrity of bacteria. Considering that Solanum triolbatum is a well-known medicinal and edible plant, in order to shed light on its ancient usage in this work, an efficient anti-microbial protein was isolated, characterized and its in vitro functional study against human pathogenic bacteria was evaluated.


Assuntos
Antibacterianos , Folhas de Planta/química , Proteínas de Plantas , Solanum/química , Staphylococcus aureus/crescimento & desenvolvimento , Vibrio cholerae/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia
16.
Chem Biol Drug Des ; 99(1): 111-117, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407290

RESUMO

Extraction and deproteinization process of polysaccharide from purple sweet potato (PPSP) were optimized via the response surface methodology (RSM). The results indicated that the optimal conditions of extraction in hot water of PPSP were as follows: The extraction temperature was 120℃, the extraction time was 2.5 hr, and the solid-liquid ratio was 1∶10 (g/ml). The optimal conditions of Sevage deproteinization were as under the oscillation time was 20 min, the deproteinization times was twice, and polysaccharide solution-Sevage reagent ratio was 1:1 (ml/ml). The extraction yield of PPSP was 3.32%, and the protein removal rate was 93.14% in such a condition.


Assuntos
Ipomoea batatas/metabolismo , Proteínas de Plantas/química , Polissacarídeos/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Proteínas de Plantas/isolamento & purificação , Polissacarídeos/isolamento & purificação , Extração em Fase Sólida/métodos , Propriedades de Superfície , Temperatura , Água/química
17.
J Sci Food Agric ; 102(3): 892-897, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34586636

RESUMO

Increasing population and depletion of resources have paved the way to find sustainable and nutritious alternative protein sources. Pulses have been identified as a nutritious and inexpensive alternative source of protein that can meet this market demand. Pulses can be converted into protein concentrates and isolates through dry and wet separation techniques. Wet extraction results in relatively pure protein isolates but less sustainable due to higher energy requirements and high waste generation. Dry separation focuses on ingredient functionality rather than molecular level purity. These extracted pulse protein ingredients can be incorporated into different food systems to increase the nutritional value and to achieve the desired functionality. But many plant-based alternative proteins including pulses, face several formulation challenges especially in nutritional, sensory, and functional aspects. Native pulse protein ingredients can contain antinutrients, beany flavor, and undesirable functionality. Modification by biological (enzymatic, fermentation), chemical (acylation, deamidation, glycosylation, phosphorylation), and physical (cold plasma, extrusion, heat, high pressure, ultrasound) methods or a combination of these can improve pulse protein ingredients at the macro and micro level for their desired use. These modification processes will thermodynamically change the structural and conformational characteristics of proteins and expect to improve the quality. © 2021 Society of Chemical Industry.


Assuntos
Fabaceae/química , Tecnologia de Alimentos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Fabaceae/metabolismo , Humanos , Valor Nutritivo , Proteínas de Plantas/metabolismo , Paladar
18.
J Sci Food Agric ; 102(1): 233-240, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081335

RESUMO

BACKGROUND: The oil palm tree produces 90% of wastes and the limited usage of these wastes causes a major disposal problem in the mills. Nevertheless, these by-products have a large amount of nutritional components. Thus, the present study aimed to determine the physicochemical and functional properties of protein hydrolysates (PH) from oil palm leaves (OPL) extracted using different concentrations of Alcalase (0-10%) at 2 h of hydrolysis time. RESULTS: Fourier transform infrared spectral analyses showed that the enzymatic hydrolysis altered functional groups of OPL where a secondary amine was present in the PH. Changes were also observed in the thermal stability where the enthalpy heat obtained for PH (933.93-1142.57 J g-1 ) was much lower than OPL (7854.11 J g-1 ). The results showed that the PH extracted by 8% Alcalase exhibited absolute zeta potential, as well as a high emulsifying activity index (70.64 m2  g-1 of protein) and emulsion stability index (60.58 min). Furthermore, this PH showed higher solubility (96.32%) and emulsifying properties compared to other PHs. It is also comparable with commercial plant proteins, indicating that 8% Alcalase is an optimum concentration for hydrolysis. CONCLUSION: In summary, the physicochemical and functional properties of PH extracted from OPL showed good functional properties, suggesting that it can be used as an alternative plant protein in food industries. © 2021 Society of Chemical Industry.


Assuntos
Arecaceae/química , Folhas de Planta/química , Proteínas de Plantas/química , Biocatálise , Emulsões/química , Concentração de Íons de Hidrogênio , Hidrólise , Peso Molecular , Proteínas de Plantas/isolamento & purificação , Hidrolisados de Proteína/química , Hidrolisados de Proteína/isolamento & purificação , Solubilidade , Subtilisinas/química
19.
J Sci Food Agric ; 102(2): 823-835, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34232506

RESUMO

BACKGROUND: The relatively inferior techno-functionality of flaxseed protein/polysaccharide complexes, especially regarding emulsifying and antioxidant activities, has partially limited their implication in the health food system. The present study aimed to investigate the effects of an atmospheric pressure plasma jet (APPJ) on the physicochemical, structural and selected techno-functional properties of flaxseed extracts. RESULTS: The results obtained showed that the full-fat and defatted flaxseed extract solutions (5 mg mL-1 ) displayed a sustainable decline in pH (-54.06%, -48.80%, P < 0.05) and zeta potential values (-29.42%, -44.28%, P < 0.05), but a gradual increase in particle sizes, as visualised by an optical microscope, during 0-120 s of APPJ treatment. Moreover, the APPJ led to initial decrease but subsequent increase in protein carbonyls and secondary lipid oxidation products, and concurrently changed the spatial conformation and microstructure of flaxseed extracts, as indicated by endogenous fluorescence properties and scanning electron microscopy (SEM). Additionally, the protein subunit remodeling and gum polysaccharides depolymerization were different for full-fat and defatted flaxseed extracts after 30 s of APPJ exposure. Importantly, the emulsifying and antioxidant activities of defatted flaxseed extract were particularly improved, as assessed by cyro-SEM and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity following 15-30 s of APPJ treatment, as a result of the changing interactions between protein and gum polysaccharides, as well as the release of specific phenolic compounds. CONCLUSION: APPJ could serve as a promising strategy for tailoring the specific techno-functionality of flaxseed extracts based on mild structural modification. © 2021 Society of Chemical Industry.


Assuntos
Linho/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sementes/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Pressão Atmosférica , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
20.
Protein Expr Purif ; 191: 106024, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34808343

RESUMO

Polygonum cuspidatum, an important medicinal plant in China, is a rich source of resveratrol compounds, and its synthesis related resveratrol synthase (RS) gene is highly expressed in stems. The sequence of the resveratrol synthase was amplified with specific primers. Sequence comparison showed that it was highly homologous to the STSs. The RS gene of Polygonum cuspidatum encodes 389 amino acids and has a theoretical molecular weight of 42.4 kDa, which is called PcRS1. To reveal the molecular basis of the synthesized resveratrol activity of PcRS1, we expressed the recombinant protein of full-length PcRS1 in Escherichia coli, and soluble protein products were produced. The collected products were purified by Ni-NTA chelation chromatography and appeared as a single band on SDS-PAGE. In order to obtain higher purity PcRS1, SEC was used to purify the protein and sharp single peak, and DLS detected that the aggregation state of protein molecules was homogeneous and stable. In order to verify the enzyme activity of the high-purity PcRS1, the reaction product was detected at 303 nm. By predicting the structural information of monomer PcRS1 and PcRS1 ligand complexes, we analyzed the ligand binding pocket and protein surface electrostatic potential of the complex, and compared it with the highly homologous STSs protein structures of the iso-ligand. New structural features of protein evolution are proposed. PcRS1 obtained a more complete configuration and the optimal orientation of the active site residues, thus improving its catalytic capacity in resveratrol synthesis.


Assuntos
Aciltransferases , Fallopia japonica/enzimologia , Proteínas de Plantas , Aciltransferases/biossíntese , Aciltransferases/química , Aciltransferases/genética , Aciltransferases/isolamento & purificação , Fallopia japonica/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA